

05/17/2007

ECC 63 Herb Hill Road Glen Cove, NY 11542 **STL Edison** 777 New Durham Road Edison, NJ 08817

Tel 732 549 3900 Fax 732 549 3679 www.stl-inc.com

Attention: Mr. Theodore Johnson

Laboratory Results Job No. F973 - Li Tungsten

Dear Mr. Johnson:

Enclosed are the results you requested for the following sample(s) received at our laboratory on May 5, 2007.

<u>Lab No.</u>	Client ID	Analysis Required
826649	5601-FSS-PB-1016	As
		Pb
826650	5601-FSS-PB-1017	As
		Pb
826651	5601-FSS-PB-1018	As
		Pb
826652	5601-FSS-PB-1019	As
	T 101 FIG DD 1000	Pb
826653	5601-FSS-PB-1020	As
00.5554	5001 FGG DD 1000	Pb
826654	5601-FSS-PB-1028	As

STL Edison 777 New Durham Road Edison, NJ 08817

Tel 732 549 3900 Fax 732 549 3679 www.stl-inc.com

Laboratory Results
Job No. F973 - Li Tungsten (cont'd)

<u>Lab No.</u> <u>Client ID</u> <u>Analysis Required</u>

Pb

This report is not to be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please contact me at (732) 549-3900.

Very Truly Yours,

Michael Legg Project Manager

Analytical Results Summary	1
General Information	8
Chain of Custody	8
Laboratory Chronicles	10
Methodology Review	17
Data Reporting Qualifiers	21
Non-Conformance Summary	23
Metals Forms and Data	25
Analytical Results Summary	25
Blank Results Summary	32
Calibration Summary	36
ICP Interference Check Results Summary	40
Spike Sample Recovery Summary	43
Sample and MS Duplicate Results Summary	46
Laboratory Control Samples Results Summary	49
Serial Dilution Summary	51
Analysis Run Log	53
	5 7
This is the Last Page of the Document	J /

Analytical Results Summary

Site: Li Tungsten

Lab Sample No: 826649

Lab Job No: F973

Date Sampled: 05/04/07
Date Received: 05/05/07

Matrix: SOLID Level: LOW

% Moisture: 15.0

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection <u>Limit</u>	<u>Q</u> ual	M
Arsenic	7.4	1.1		P
Lead	14.7	0.64		P

Qual Column - Data Reporting Qualifiers (See Sec 2 of Report) M Column - Method Code (See Section 2 of Report)

2

Site: Li Tungsten

Lab Sample No: 826650

Lab Job No: F973

Date Sampled: 05/04/07 Date Received: 05/05/07

Matrix: SOLID Level: LOW

% Moisture: 11.9

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection Limit	Qual	<u>M</u>
Arsenic Lead	3.5 4.7	1.1		P

Qual Column - Data Reporting Qualifiers (See Sec 2 of Report) M Column - Method Code (See Section 2 of Report)

3

Client ID: **5601-F55-PB-1018** Lab Sample No: 826651

Site: Li Tungsten Lab Job No: F973

Date Sampled: 05/04/07 Matrix: SOLID
Date Received: 05/05/07 Level: LOW

% Moisture: 14.0

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection Limit	<u> Oual</u>	M	
Arsenic	2.8	1.1		P	
Lead	9.5	0.63		Ð	

Client ID: **5601-F55-PB-1019** Lab Sample No: 826652

Site: Li Tungsten Lab Job No: F973

Date Sampled: 05/04/07 Matrix: SOLID
Date Received: 05/05/07 Level: LOW

% Moisture: 6.1

METALS ANALYSIS

Analytical Result Instrument Units: mg/kg Detection (Dry Weight) <u>Analyte</u> <u>Limit</u> <u> Oual</u> Arsenic 3.9 1.0 Ρ Lead 9.1 0.58 Ρ

Client ID: **5601-F55-PB-1020** Lab Sample No: 826653

Site: Li Tungsten Lab Job No: F973

Date Sampled: 05/04/07 Matrix: SOLID
Date Received: 05/05/07 Level: LOW

% Moisture: 9.1

METALS ANALYSIS

Analytical Result Instrument Units: mg/kg Detection <u>Analyte</u> (Dry Weight) ___Limit <u>Qual</u> <u>M</u> Arsenic 4.3 1.0 Ρ Lead 25.9 0.59

Qual Column - Data Reporting Qualifiers (See Sec 2 of Report) M Column - Method Code (See Section 2 of Report)

6

Site: Li Tungsten

Lab Sample No: 826654

Lab Job No: F973

Date Sampled: 05/04/07 Date Received: 05/05/07 Matrix: SOLID Level: LOW

% Moisture: 9.9

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection <u>Limit</u>	<u> O</u> ual	M
Arsenic	3.9	1.0		p
Lead	4.9	0.60		Þ

Qual Column - Data Reporting Qualifiers (See Sec 2 of Report) M Column - Method Code (See Section 2 of Report)

7

General Information

Chain of Custody

Chain of Custody Record

ENVIRONMENTAL CHEMICAL CORPORATION 1746 Colorado Blvd., Suite 350 Lakewood, CO 80401 Phone: (303) 298-7607

Fax: (303) 298-7837

Fax: (303) 298-7837							COC Number:	mber:		
11 (774)	12	Tungster	ll 1			ECC P	ECC Project Manager:(Jena Henderson	derson	
Address: 63 Health!	4	ومر ردرو	NY	.।ऽ ५ व		Sample	Sampler Name: M. L.	13anc		
Phone: 203- 472- 3834	£					Custon	ECC Project Number:		2	
Fax: 516-1065-8531								7		
SAMPLE NUMBER I	DATE	TIME	TYPE	CLIENT	IENT SAMPLE IDENTIFIER	TFIER	TESTS	S	CONTAINER(S)	MATRIX
5601-FSG-PB-1016 5	5-4-07	2111	FSS	Parcel	cel B		Total Lend	Lend & Arsenic	c A\$\$ 100	50;) 8266
5601-Fes-PB-1017		7501	_				-		7	8266
Sben-Fis. AB-1018		2011								9978
5601-FX-PB-1019		0811								9978
5601-FW-R-1026		1135								8205
5601-Fix-PB-1038	-	1050	7		→		->	→	→	9978 1
/					4 / / A					
					MIN				/	
										1
Notes, Shates Leven Treat Lationaling, EDISON 777 New Durhan Road, Swite 7 Edison New Jersey, 198817	Outher	Road, Sur	NSON R-7 Ediso	New Jersey		Laboratory Receipt Information Cooler/Container Intact?	mation			
Phone 731-54-3900	3900			Land		Samples Received at below 4°C	£;	YesNo	1	
request runtaround rune.	70ay		7	Sangle world below 4C		pre Containers ler/Container	٠.	Yes No		
				CU	CUSTODY TRANSFER RECORD	FER RECOR	æ)s	
Relinquished by: M. Laldone (signature) make	John John John John John John John John	Company:		Date: 5-4-07	Time: 16 0S	Received by: (signature)	18h	Company:	Date; 107 515/07	Time: 1/2/9
Relinquished by: (signature)		Сотрапу:		Date:	Time:	Received by: (signature)		Company:	Date:	Time:
Relinquished by: (signature)		Company:		Date:	Time:	Received by: (signature)		Company:	Date:	Time:
Relinquished by: (signature)		Company:		Date:	Time:	Received by: (signature)		Company:	Date:	Time:

23225

Laboratory Chronicles

777 New Durham Road, Edison, New Jersey 08817

Job No:	F973	Site:	Li Tungsten
Client:	ECC	Date Sampled:	5/4/2007
Sample No.:	826649	Date Received:	5/5/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547
LEAD	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547

777 New Durham Road, Edison, New Jersey 08817

Job No:	F973	Site:	Li Tungsten
Client:	ECC	Date Sampled:	5/4/2007
Sample No.:	826650	Date Received:	5/5/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547
LEAD	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547

777 New Durham Road, Edison, New Jersey 08817

Job No:	F973	Site:	Li Tungsten
Client:	ECC	Date Sampled:	5/4/2007
Sample No.:	826651	Date Received:	5/5/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547
LEAD	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547

777 New Durham Road, Edison, New Jersey 08817

Job No:	F973	Site:	Li Tungsten
Client:	ECC	Date Sampled:	5/4/2007
Sample No.:	826652	Date Received:	5/5/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547
LEAD	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547

777 New Durham Road, Edison, New Jersey 08817

Job No:	F973	Site:	Li Tungsten
Client:	ECC	Date Sampled:	5/4/2007
Sample No.:	826653	Date Received:	5/5/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547
LEAD	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547

777 New Durham Road, Edison, New Jersey 08817

Job No:	F973	Site:	Li Tungsten
Client:	ECC	Date Sampled:	5/4/2007
Sample No.:	826654	Date Received:	5/5/2007
•		Matrix:	
		mati ix.	

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547
LEAD	5/8/2007	Sanagavarapu, Suguna	5/9/2007	Polidori, Michael	22547

Methodology Review

Analytical Methodology Summary

Volatile Organics:

Unless otherwise specified, water samples are analyzed for volatile organics by purge and trap GC/MS as specified in EPA Method 624. Drinking water samples are analyzed by EPA Method 524.2 Rev 4.1. Solid samples are analyzed for volatile organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8260B.

Acid and Base/Neutral Extractable Organics:

Unless otherwise specified, water samples are analyzed for acid and/or base/neutral extractable organics by GC/MS in accordance with EPA Method 625. Solids are analyzed for acid and/or base/neutral extractable organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8270C.

GC/MS Nontarget Compound Analysis:

Analysis for nontarget compounds is conducted, upon request, in conjunction with GC/MS analyses by EPA Methods 624, 625, 8260B and 8270C. Nontarget compound analysis is conducted using a forward library search of the EPA/NIH/NBS mass spectral library of compounds at the greatest apparent concentration (10% or greater of the nearest internal standard) in each organic fraction (15 for volatile, 15 for base/neutrals and 10 for acid extractables).

Organochlorine Pesticides and PCBs:

Unless otherwise specified, water samples are analyzed for organochlorine pesticides and PCBs by dual column gas chromatography with electron capture detectors as specified in EPA Method 608. Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8081A for organochlorine pesticides and Method 8082 for PCBs.

Total Petroleum Hydrocarbons:

Water samples are analyzed for petroleum hydrocarbons by I.R. using EPA Method 418.1. Solid samples are prepared for analysis by soxhlet extraction consistent with the March 1990 N.J. DEP "Remedial Investigation Guide" Appendix A, page 52, and analyzed by U.S. EPA Method 418.1

Metals Analysis:

Metals analyses are performed by any of four techniques specified by a Method Code provided on each data report page, as follows:

- P Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP)
- A Flame Atomic Absorption
- F Furnace Atomic Absorption
- CV Manual Cold Vapor (Mercury)

Water samples are digested and analyzed using EPA methods provided in "Methods for Chemical Analysis of Water and Wastewater" (EPA 600/4-79-020). Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition); samples are digested according to Method 3050B "Acid Digestion of Soil, Sediments and Sludges."

Specific method references for ICP analyses are water Method - 200.7/SW846 6010B and for solid matrix - 6010B. Mercury analyses are conducted by the manual cold vapor technique specified by water Method 245.1/7470A and solid Method 7471A. Other specific Atomic Absorption method references are as follows:

Element	Water Test Method <u>Furnace</u>	Solid Test Method <u>Furnace</u>
Antimony	200.9	7041
Arsenic	200.9	7060A
Cadmium	200.9	7131A
Lead	200.9	7421
Selenium	200.9	7740
Thallium	200.9	7841

Cyanide:

Water samples are analyzed for cyanide using EPA Method 335.3. Cyanide is determined in solid samples as specified in the EPA Contract Laboratory Program IFB dated July 1988, revised February 1989.

Phenols:

Water samples are analyzed for total phenols using EPA Method 420.2. Total phenols are determined in water and solid samples by preparing the sample as outlined in the EPA Contract Laboratory Program IFB for cyanide, followed by a phenols determination using EPA Method 420.1.

Hexavalent Chromium:

Water samples are analyzed using EPA Method 7196A, EPA Method 7199 or (upon request) USGS -1230-35. Soil samples are subjected to alkaline digestion via EPA Method 3060A prior to analysis by EPA Method 7196A or EPA Method 7199.

Cleanup of Semivolatile Extracts:

Upon request Method 3611B Alumina Column Cleanup and/or Method 3650B Acid-Base Partition Cleanup are performed to improve detection limits by the removal of saturated hydrocarbon interferences.

Hazardous Waste Characteristics:

Samples for hazardous waste characteristics are analyzed as specified in the U.S. EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition). Specific method references are as follows:

Ignitability - Method 1020A

Corrosivity - Water pH Method 9040B Soil pH Method 9045C

Reactivity - Chapter 7, Section 7.3.3 and 7.3.4 respectively for hydrogen cyanide and hydrogen sulfide release

Toxicity - TCLP Method 1311

Miscellaneous Parameters:

Additional analyses performed on both aqueous and solid samples are in accordance with methods published in the following references:

- Test Methods for Evaluating Solid Wastes, SW-846 3rd Edition, November 1986.
- Standard Methods for the Examination of Water and Wastewater, 18th Edition.
- Methods for Chemical Analysis of Water and Wastes, $\mbox{EPA-600/4-79-020}$, 1979.

Data Reporting Qualifiers

ORGANIC DATA REPORTING QUALIFIERS

- ND The compound was not detected at the indicated concentration.
- J Mass spectral data indicates the presence of a compound that meets the identification criteria. The result is less than the specified quantitation limit but greater than or equal to the method detection limit. The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 - * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

INORGANIC DATA REPORTING QUALIFIERS (SW-846 METHODS ONLY)

- ND/U The compound was not detected at the indicated concentration.
- B Reported value is less than the Practical Quantitation Limit but greater than or equal to the Instrument Detection Limit.
- E The reported value is estimated because of the presence of interference. See explanatory note in the Nonconformance Summary if the problem applies to all of the samples or on the individual Inorganic Analysis Data Sheet if the problem is isolated.
- M Duplicate injection precision not met on the Furnace Atomic Absorption analysis.
- N The spiked sample recovery is not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- * Duplicate Analysis is not within control limits.
- W Post digestion spike for Furnace Atomic Absorption analysis is out of control.
- + Correlation coefficient for MSA is less than 0.995.
- M Column Method Qualifiers
- P Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP).
- A Flame Atomic Absorption Spectroscopy (FAA).
- F Graphite Furnace Atomic Absorption Spectroscopy (GFAA).
- CV Cold Vapor Atomic Absorption Spectroscopy.

Non-Conformance Summary

Nonconformance Summary

STL Edison Job Number: F973

Client: ECC

Date: 5/17/2007

Sample Receipt:

Sample delivery conforms with requirements.

Metals:

All data conforms with method requirements.

I certify that the test results contained in this data package meet all requirements of NELAC both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this package has been authorized by the Laboratory Director or their designee, as verified by the following signature.

Michael Legg Project Manager

Metals Forms and Data

Analytical Results Summary

Site: Li Tungsten

Lab Sample No: 826649

Lab Job No: F973

Date Sampled: 05/04/07 Date Received: 05/05/07 Matrix: SOLID Level: LOW

% Moisture: 15.0

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection Limit	Qual	M	
Arsenic	7.4	1.1		P	
Lead	14.7	0.64		Þ	

Site: Li Tungsten

Lab Sample No: 826650

Lab Job No: F973

Date Sampled: 05/04/07
Date Received: 05/05/07

Matrix: SOLID Level: LOW

% Moisture: 11.9

METALS ANALYSIS

	Analytical			
	Result Units: mg/kg	Instrument Detection		
Analyte	(Dry Weight)	Limit	Oual	M
<u>raidly CC</u>	Thin Menduch	BIMIC	<u>Oual</u>	<u>M</u>
Arsenic	3.5	1.1		P
				-
Lead	4.7	0.61		P

Site: Li Tungsten

Lab Sample No: 826651

Lab Job No: F973

Date Sampled: 05/04/07
Date Received: 05/05/07

Matrix: SOLID Level: LOW

% Moisture: 14.0

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection Limit	Qual	<u>M</u>
Arsenic Lead	2.8	1.1		P

Client ID: **5601-F55-PB-1019** Lab Sample No: 826652

Site: Li Tungsten Lab Job No: F973

Date Sampled: 05/04/07 Matrix: SOLID
Date Received: 05/05/07 Level: LOW

% Moisture: 6.1

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection <u>Limit</u>	Qual	<u>M</u>
Arsenic	3.9	1.0		P
Lead	9.1	0.58		P

Client ID: **5601-F55-PB-1020** Lab Sample No: 826653

Site: Li Tungsten Lab Job No: F973

Date Sampled: 05/04/07 Matrix: SOLID
Date Received: 05/05/07 Level: LOW

% Moisture: 9.1

METALS ANALYSIS

	Analytical Result Units: mg/kg	Instrument Detection			
<u>Analyte</u>	<u>(Dry Weight)</u>	Limit_	_Qual_	M	
Arsenic	4.3	1.0		P	
Lead	25.9	0.59		P	

Client ID: **5601-F55-PB-1028** Lab Sample No: 826654

Site: Li Tungsten Lab Job No: F973

Date Sampled: 05/04/07 Matrix: SOLID
Date Received: 05/05/07 Level: LOW

% Moisture: 9.9

METALS ANALYSIS

	Analytical Result Units: mg/kg	Instrument Detection		
<u>Analyte</u>	(Dry Weight)	<u>Limit</u>	<u>Qual</u>	<u>M</u>
Arsenic	3.9	1.0		P
Lead	4.9	0.60		P

Blank Results Summary

BLANKS

Lab	Name:	STL	EDISON	

Lab Code: 12028_ Lab Job No.: _F973 _____ Batch No.: 22547_

Preparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Initial Calib. Blank (ug/L)	C	Cont		uing Calib lank (ug/L 2		tion 3	C	 Prepa- ration Blank	 	 M
Aluminum_		Ţ		l_		l	1	<u> </u>		_ 	NR_
Antimony_		_ _ [.		l_		1_	l	$ _{-} $		_	NR_
Arsenic	4.7	ַ ט	4.7_	U	4.7_	U	4.7_	ט	0.470	บ	P
Barium		_ _ .		ļ		<u> </u> _]	1_1		_	NR_
Beryllium		. _ .		_		 _		$ _{-} $		_	NR_
Cadmium	0.6	[u]	0.6_	U	0.6_	U	0.6_	ט	0.060	ט	P
Calcium		. _ .		_		_		1_1		_	NR_
Chromium_		. _ .		_				$ _ $	<u> </u>	_	NR_
Cobalt		. _[.		_		 _	i	$ _ $		_	NR_
Copper		. _ .		1_1		_		$ _ $		_	NR_
Iron		.1_1.		l_		_	l	$ _ $		_	NR_
Lead	2.7	ט	2.7	Ų	2.7_	ט	2.7_	U	0.270	υĺ	P
Magnesium	****	. .		_		_		$ _ $		_	NR_
Manganese	~	. .		_		_		$ _ $		_	NR_
Mercury		. .			***	_		1_1	l	_1	NR_
Nickel		. .			***	 _		_	11	_1	NR_
Potassium		.[_].		<u> </u> _		<u> </u> _		_			NR_
Selenium_		. _ .		_	*****	_	- Interior	$ _ $	ll	_	NR_
Silver		. _ .		<u> </u> _		_		_		_ [NR_
Sodium		. _[.		_		_				_	NR_
Thallium_		. _ .		_		_		_	<u> </u>	_	NR_
Vanadium_	******	.ļ_ļ.		_		_		_		_	NR_
Zinc	*****	.ļ_ļ.	····	_		_		_		_	NR_
Molybdenu		. _ -		_		_		_		_1	NR_
i	***************************************	. _ .		_		_		$\lfloor _{-} floor$	l		1

BLANKS

nan Mame: PIT TDIP	ON			
Lab Code: 12028_	Lab Job No.: _F973		Batch No.:	22547_
Preparation Blank	Matrix (soil/water):			r
Preparation Blank	Concentration Units (ug/L or mg	/ka) •		

Analyte	Initial Calib. Blank (ug/L)	C	Cont		uing Calib lank (ug/L) 2			C	Prepa- ration Blank C	 M
Aluminum		. 		ı		1		_¦		NR_
Antimony		- - -	-	¦-		¦	 	-	_	NR
Arsenic		- - -	4.7	111	}	-		-	¦	P
Barium		- -	<u>-</u>	-	<u> </u>	¦-	1	¦¦		NR
Beryllium		-1-1-		¦-	I	¦-		-		NR
Cadmium		-i-i-	0.6	U		¦-		-	[P
Calcium		- i - i -		Ì	i	i-		l-i		NR
Chromium		-i-i-	7-1	i-		i-				NR
Cobalt		-i-i-		į –		i		-i		NR
Copper		_ _		i –		ĺ		-i		NR
Iron		<u> </u>		i ⁻		_		-i		NR
Lead	2013		2.7	Ū		i –		-i		P
Magnesium		<u> </u>		İ_		i		-i		NR
Manganese		1_1_		İΞ				_i		NR_
Mercury		. _ _		ĬΞ				_i		NR
Nickel		. _ _		<u> </u>				Ξi		NR_
Potassium		. _ _		 _			İ	<u>_</u> i		NR
Selenium_		. _ _		_		_	li	_1		NR
Silver		. _		_		_	l <u> </u>	<u>_</u> ĺ		NR_
Sodium		. _ _		_		_	[]	_		NR_
Thallium_		. _ _		_		_		_	_	NR_
Vanadium_		. _ _		<u> </u> _		_	ļI	_		NR_
Zinc		. _ _		<u> </u> _		_		_		NR_
Molybdenu		. _ _		_		_		_		NR_
	77.7	.1_1_		_		_	[]	_]

BLANKS

Lab Name:	STL_EDIS	SON				
Lab Code:	12028_	Lab Job No	o.: _F973		Batch No.:	22547_
Preparation	on Blank	Matrix (soil,	/water):			
Preparation	on Blank	Concentration	n Units (ug/L o	or mg/kg):		

	Initial Calib. Blank	 	_	Cont	В	uing Cal lank (ug	J/L)					Prepa- ration		
Analyte	(ug/L)	C	1		С	2	С		3	С		Blank	C	M
Aluminum		T		~~~	1]	1	1			-		¦	NR
Antimony_		-i-i			`i_	i		i T		_ -	i i —		i-i	NR
Arsenic	4.7	ַן <u>י</u> ַ		4.7	ับ	4.	7 Ū	i		i-	i i —		i-i	į₽ ¯
Barium		īi i	-		Ì		_i	i_			i i [—]		i-i	NR
Beryllium		- i i	***************************************		i-		— i –	i —			i i		i-i	NR
Cadmium_		- i i			1-		i_	i —			i i —		i-i	NR
Calcium_		-i i			i -		— i –	i —		_i_	ii—		-	NR
Chromium_		∐i			i —		i_	i_		i_	i i		i-i	NR
Cobalt		ΠĪ			i_		i_	Ī	,		i i —		i-i	NR
Copper		_			<u> </u>		İ			_ i _	i i 🗆		i-i	NR
Iron		_			Ī_			i —			i i —		i-i	NR
Lead		<u> </u>			i –					_ i_	i i 💳		i-i	NR
Magnesium		_ _			Ĭ_		i_						i-i	NR
Manganese		_ _											ΙŢ	NR
Mercury		_ _			1_			ĺ					ĺΞĺ	NR
Nickel		1_1								ΞiΞ			i_i	NR
Potassium		_ _			 _			1_					iΞi	NR_
Selenium_	· · · · · · · · · · · · · · · · · · ·	_ _			_		_			_ _	ИΞ		ĺΞĺ	NR
Silver	· ·	_ _								\equiv i \equiv i	\Box		ΙΞί	NR
Sodium		_ _			1_		_			_ _			I = I	NR
Thallium_		. _			_						<u> </u>		ijij	NR_
Vanadium_		. _		***	1_								ΙŢί	NR_
Zinc		. _					[_	_		_ _	' i		iΞi	NR_
Molybdenu	W 44	. _			_		i_	_			Í		<u>i_</u> i	NR
		1					1	1			i		ΪĪ	i -

Calibration Summary

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL_EDISON			_	 		
Lab	Code:	12028_	Lab Job	No.:	F973	 Batch 1	No.:	22547_
Tnit	tial Ca	alibration :	Source	TNO	ORG VENT			

Continuing Calibration Source: INORG VENT__

Concentration Units: ug/L

	•	al Calibra		 	Continui	_		a = (=)	
Analyte 	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Aluminum_		<u> </u>	<u> </u>			l			NR
Antimony_						l			NR
Arsenic	5000.0	_4844.23	_96.9	5000.0	4919.02	98.4	_4879.67	97.6	P_
Barium			Í		l		<u> </u>	i	NR
Beryllium								j	NR
Cadmium	2500.0	2428.31	97.1	2500.0	2472.21	98.9	2444.16	97.8	P_
Calcium		_	j –		i –	i	<u> </u>	i –	NR
Chromium		-	i —					i —	NR
Cobalt			i —					i ——	NR
Copper			i ——			i — — i			 NR
Iron			i			i — i		i ——	NR
Lead	_10000.0	9778.12	97.8	10000.0	9979.96	99.8	9818.55	98.2	
Magnesium	i	_	i —	i -	<u> </u>	i 	-	i [—]	NR
Manganese						i — i			NR
Mercury									NR
Nickel		·				i — i		i ——	NR
Potassium						i i			NR
Selenium						' '		i ——	NR
Silver	i					i —— i		i ——	NR
Sodium							-		NR
Thallium_						i i			NR
Vanadium_						i — — i	7714 /	i —— i	NR
Zinc						i ——			NR
Molybdenu						—			NR
i						i — i		i —— i	

(1) Control Limits: Mercury 80-120; ICP Metals 90-110; Furnace AA Metals 80-120

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL_EDISON_			 	
Lab Code:	12028	Lab Job No	o.: F973	 Batch No.:	22547_
Initial Ca	alibration S	ource:	INORG VENT		

Continuing Calibration Source: INORG VENT__

Concentration Units: ug/L

	- 1.1.4					5.1			
 Analyte	Initial True	Calibr Found	ation %R(1)	 True	Continui: Found	ng Cali %R(1)		%R(1)	1
ii_				j					İ
Aluminum_			.	l	l			l	
Antimony_	_		.]	
Arsenic	l		l	5000.0	_4912.79	_98.3	_4956.32	99.1	
Barium			.	<u> </u>				l	
Beryllium			<u> </u>	l	l			l	
Cadmium				2500.0	_2480.99	99.2	_2490.33	99.6	
Calcium			ļ			i		l	
Chromium_			ļ					l	
Cobalt			ļ		l				
Copper					<u> </u>				
Iron			ļ					l	
Lead _				_10000.0	_9890.22	_98.9	_9921.55	_99.2	
Magnesium	[ļ			ll	***************************************		$\ \cdot\ $
Manganese									11
Mercury								l	
Nickel								<u> </u>	
Potassium _							***************************************		
Selenium_			ļ						H
Silver	<u> </u>		ļ						
Sodium			<u> </u>						
Thallium_ _			!						$\ $
Vanadium_ _				ļ <u> </u>					$\ \ $
Zinc					******				
Molybdenu _			ļ						
· l _			i						П

(1) Control Limits: Mercury 80-120; ICP Metals 90-110; Furnace AA Metals 80-120

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL_EDISON_	· · · · · · · · · · · · · · · · · · ·	 4,444
Lab	Code:	12028_	Lab Job No.: F973	 Batch No.: 22547_

Initial Calibration Source: INORG VENT___

Continuing Calibration Source: INORG VENT___

Concentration Units: ug/L

 Analyte	Initia True	al Calibra Found	ation %R(1)	 True	Continui Found	ng Cali %R(1)		%R(1)	
Aluminum			 		<u> </u>	<u> </u>	——————————————————————————————————————	1	
Antimony				-					NR NR
Arsenic	5000.0	_4956.06	99.1	5000 0	4880 76	97.6	4850 97	97 0	• • •
Barium			, 		1_4000.70	- ⁻ /.0	_4030.97		P_ NR
Beryllium					*****				NR
Cadmium						<u> </u>			NR
Calcium			·				***************************************		NR
Chromium						¦¦	- 1/4		NR
Cobalt				+*		——— 			NR
Copper						¦¦		F	NR
Iron									NR
Lead					Water 1	<u> </u>			NR
Magnesium							[NR
Manganese						¦			NR
Mercury	i	i	i			¦;	 -		NR
Nickel_	i			-14/14					NR
Potassium	i		i	********		¦¦	i		NR
Selenium_	i		i					—— ¦	NR
Silver			i					¦	NR
Sodium								\	NR
Thallium_			i		**	¦ ———		——:	NR
Vanadium_								i	NR
Zinc			i					i	NR
Molybdenu		i						 ¦	NR
l									
			- · · · · · · · · · · · · · · · · · · ·						

(1) Control Limits: Mercury 80-120; ICP Metals 90-110; Furnace AA Metals 80-120

ICP Interference Check Results Summary

ICP INTERFERENCE CHECK SAMPLE

Lab Name:	STL EDISON	
		 T1740000

Lab Code: 12028_ Lab Job No.: _F973 ____ Batch No.: 22547_

ICP ID Number: TRACE1 TJA61 ICS Source: INORG VENT___

Concentration Units: ug/L

	T	rue	In:	itial Foun	d	:	Final Found	d
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	%R	A	AB	%R
Aluminum_	500000	500000	487968	_482915.2	96.6	494874	488258.1	97.7
Antimony_		100		85.5	85.5		100.7	100.7
Arsenic	l	100		97.8	97.8		98.5	98.5
Barium		100		102.5	102.5		103.6	103.6
Beryllium		100		96.6	96.6	j		97.5
Cadmium		100		94.6	94.6		96.0	96.0
Calcium	500000	_500000	482475	478846.0	95.8	495529	483200.1	. —
Chromium_	İ	100	[94.1	94.1	i –	: -	_ 95.6
Cobalt		100		94.3	94.3			96.2
Copper	li	100		97.4	97.4		97.4	97.4
Iron	200000	_200000	_200017	_198564.9	99.3	204714	199866.4	99.9
Lead	l	100	li		91.8			97.7
Magnesium	500000	_500000	_523911	_518883.1	103.8	_535438	_522746.7	104.5
Manganese		100			94.9		_	95.1
Mercury	li						·	
Nickel		100		95.4	95.4		98.5	98.5
Potassium								
Selenium_		100		96.1	96.1		97.8	97.8
Silver		100		99.3	99.3			99.6
Sodium								_
Thallium	lI	100		89.7	_89.7		91.1	91.1
Vanadium_		100		92.9	_92.9		95.5	95.5
Zinc		100		96.6	_96.6			_97.8

ICP INTERFERENCE CHECK SAMPLE

lab	Name:	STL EDISON	

Lab Code: 12028_ Lab Job No.: _F973 ____ Batch No.: 22547_

ICP ID Number: TRACE1 TJA61 ICS Source: INORG VENT___

Concentration Units: ug/L

1			1	WY				
	T	rue	 In:	itial Foun	d	 	Final Foun	d
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	_
Analyte	A	AB	A	AB	%R	A	AB	&R
Aluminum_	500000	500000	492136	492391.5	98.5	488908	_502311.1	100.5
Antimony_	İ	100	į –		90.4			101.3
Arsenic_		100			99.4		!	101.2
Barium		100		104.0	104.0		:	106.7
Beryllium		100		:	97.7			99.8
Cadmium		100		94.0	94.0			95.4
Calcium	500000	500000	490619	483625.5	96.7	485537	:	· —
Chromium_	<u> </u>	100		95.8	95.8	'	! -	97.5
Cobalt		100		95.5	95.5			97.8
Copper		100			99.5	· 		101.5
Iron	200000	200000	202755		· —		_204705.1	•
Lead		100		102.7	102.7		_	101.2
Magnesium	500000	_500000	529766	524943.2	105.0	525531	_535467.6	107.1
Manganese		100			96.0	_		98.1
Mercury	l				j —	-		
Nickel		100		97.0	97.0		101.2	101.2
Potassium					i –		***	i
Selenium_		100		102.8	102.8		101.7	101.7
Silver	<u> </u>	100		101.4	101.4			103.2
Sodium					İ	i		j
Thallium_		100		96.2	96.2	i	90.1	90.1
Vanadium_		100		95.6	95.6			97.6
Zinc		100		98.0	98.0			102.7

Spike Sample Recovery Summary

SPIKE SAMPLE RECOVERY

		BSS050807
Lab Name	: STL_EDISON	

Lab Code: 12028_ Lab Job No.: F973 _____Batch No.: 22547_

Matrix (soil/water): SOIL___ Level (low/med): LOW___

% Solids for Sample: 100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

				·					
	 Control				i			ļ 	<u> </u>
<u> </u>	Limit	Spiked Sample		Sample		Spike		ļ	ļ
Analyte	%R	Result (SSR)	C	Result (SR)	C	Added (SA)	₹R	Q	M
Aluminum_	 		— 		T^{l}			-	NR
Antimony			i i		i Ti			i –	NR
Arsenic	75-125_	190.4491_	i_i	0.4700	 	200.00	95.2	<u> </u> _	P_
Barium			1_1		$\lfloor \rfloor$		li	_	NR
Beryllium			_		<u> </u>			i	NR
Cadmium	75-125_	4.9970_	1_1	0.0600	ט	5.00	99.9	<u> </u>	P_
Calcium			$ _ $		_			_	NR
Chromium_			_	4704	_				NR
Cobalt			_		_			_	NR
Copper			_		_				NR
Iron	[$\lfloor \rfloor$		_				NR
Lead	75-125_	49.5800_	_	0.2700	υ	50.00	99.2		P
Magnesium			_		<u> </u>				NR
Manganese			_	· · · · · · · · · · · · · · · · · · ·					NR
Mercury			_						NR
Nickel			_		$\lfloor - \rfloor$				NR
Potassium			_						NR
Selenium_		7714	_		_1				NR
Silver					_				NR
Sodium			$ _{\perp} $					-i	NR
Thallium_			_					Ξi	NR
Vanadium_			_					_i	NR
Zinc			_		_[Ξi	NR
Molybdenu		3·15-	_	7.51.00	_ [_i	NR
			<u> </u>		Ξi			-i	i

om	ments:					
		W-1	 	 	Witness of the contract of the	
		0	 			
			 		· · · · · · · · · · · · · · · · · · ·	
-				 		

SPIKE SAMPLE RECOVERY

		826558MS
Lab Name:	STL_EDISON	

Lab Code: 12028_ Lab Job No.: F973 _____Batch No.: 22547_

Matrix (soil/water): SOIL__ Level (low/med): LOW___

% Solids for Sample: _89.2

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	 Control				ļ	1		 	
	Limit	Spiked Sample		Sample	İ	Spike		ĺ	ĺ
Analyte	%R	Result (SSR)	C	Result (SR)	C	Added (SA)	%R	Q	ĺМ
Aluminum_	 		<u> </u>					_	NR
Antimony_			<u> </u>		ا آ			i	NR
Arsenic	75-125	192.8800	i - i	3.3457	i i	224.22	84.5	i –	P
Barium	·		i i		i i			i –	NR
Beryllium			i Ti		-			-	NR
Cadmium	75-125_	5.7608	i Ti	0.8036	В	5.61	88.4	-	Ρ
Calcium_	li		j−i		i i				NR
Chromium_			i i		i			_	NR
Cobalt			i i		i Ti			_	NR
Copper			i i		ΙĪ			-	NR
Iron			i i		i i			_	NR
Lead	75-125	67.3368	i – i	17.9469	i-i	56.05	88.1	_	P
Magnesium			i – i		i-i			-	NR
Manganese	i .		i — j		-			_	NR
Mercury	i		i i		i-i		T	-	NR
Nickel			i-i	.,	-;			-	NR
Potassium			_		T)			-	NR
Selenium_			i	******	-i	****		-	NR
Silver			- j		-i		!	-	NR
Sodium			i i		-i			-¦	NR
Thallium_			-i	77	-i			-¦	NR
Vanadium_			_ i		-i			-¦	NR
Zinc			-i		-			-	NR
Molybdenu			-i		-i			٦¦	NR
i	i		-i			<u> </u>		-¦	

omments:				
		···		
		-		To do
	 	·	 ·	-

Sample and MS Duplicate Results Summary

DUPLICATES

	LCSSD055-D_
Lab Name: STL_EDISON	<u> </u>

Lab Code: 12028_ Lab Job No.: __F973 ____ Batch No.: 22547_

Matrix (soil/water): SOIL_ Level (low/med): Low_

% Solids for Sample: 100.0 % Solids for Duplicate: _100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

ĺ	Control	İ	į		i	İ	İİ	İ
Analyte	Limit	Sample (S)	c	Duplicate (D)	c	RPD	<u></u> Ω	M
Aluminum_			-				<u> </u>	NR
Antimony_			_i i		\Box i		i i 🗆	NR
Arsenic		81.4710		79.3226	Ξi	2.7	i	P_
Barium					\equiv i		i i –	NR
Beryllium			_11				i i _	NR
Cadmium		58.6666	_	57.8514	Ξi	1.4	i	P_
Calcium			_		Ξĺ	İ		NR
Chromium_			_i i		\equiv j		i i 🚾	NR
Cobalt			_		Ξì	i	j i —	NR
Copper			_		Ξĺ		i i 🗆	NR
Iron			_		\exists i		i i 🗌	NR
Lead		84.3774	_11	82.0992		2.7_	İΪ	P
Magnesium		<u> </u>	_11		_[NR
Manganese			_		-1			NR
Mercury			_		_1	1	<u> </u>	NR
Nickel			_11					NR
Potassium		li	_11		_	I		NR
Selenium_	78		_		_	1		NR
Silver			_		_1		ΙŒΪ	NR
Sodium		ļ[_11		_1			NR
${ t Thallium}_{-} $			_		_1	İ	1_1	NR
Vanadium_		4-4			_1	l	_	NR
Zinc			_		_]		NR
Molybdenu			- 11		1	1	i = i	NR

DUPLICATES

	ţ	
		826558D
Lab Name: STL_EDISON		

Lab Code: 12028_ Lab Job No.: __F973 _____ Batch No.: 22547_

Matrix (soil/water): SOIL_ Level (low/med): _LOW__

Concentration Units (ug/L or mg/kg dry weight): MG/KG

			- 1	1			1	1
	Control		i) 		
Analyte	Limit	Sample (S)	c	Duplicate (D)	c	RPD	ļΩ	М
Aluminum_					_		-	NR
Antimony_			įΤį		i-i	i — i	i ⁻	NR
Arsenic		3.3457	i_i	3.8955	iΤi	15.2	i ⁻	₽
Barium			i Ti	i	iΞi	i - i	i-	NR
Beryllium			iΞi	į ————————————————————————————————————	i	i — i	i-	NR
Cadmium_	0.6	0.8036	В	0.7294	В	9.7	i-	P
Calcium_			İί		j i	i -i	<u> </u>	NR
Chromium_	İ		İΤi		iΞi	i i	i -	NR
Cobalt	i		i		i-i	ii	i -	NR
Copper			i Ti		i-i	i	i -	NR
Iron					ΙĪ	i	i-	NR
Lead		17.9469		16.7596	i Ti	6.8	i-i	P
Magnesium			İΞİ	i	i-i	ii	j-i	NR
Manganese			i i		ĺΤi	i i	i-i	NR
Mercury			<u> </u>				ΪĪ	NR
Nickel					İΤİ	i Timber	i-i	NR
Potassium					iΤi	ii	i-i	NR
Selenium_			<u> </u>		İΤi	j	$i^{-}i$	NR
Silver					iΤi	i i	i i	NR
Sodium	1		Ξİ		i		i-i	NR
Thallium_			Ξĺ		İΪ	i i	i-i	NR
Vanadium_			_i		i_i	i i	i-i	NR
Zinc			Ξİ		<u> </u>	ji	i_i	NR
Molybdenu			ΞÌ				<u> </u>	NR
			_		<u> </u>		i. i	

Laboratory Control Samples Results Summary

LABORATORY CONTROL SAMPLE

Dab Name: SIL_EDISO	N	
Lab Code: 12028_	Lab Job No.:F973	 Batch No.: 22547_
Solid LCS Source:	ERA D055	
Aqueous LCS Source:		

Analyte Aluminum	True		n — i	_			(mg/kg)		
Aluminum		Found	%R	True	Found	С	Lim	nits	₹R
						11			
Antimony_				i		i i '			
Arsenic		ĺ		88.8	81.5	i Ti	71.8	106.0	91.8
Barium		i				ΪĪ	<u> </u>		_
Beryllium						i i			
Cadmium			i	63.0	58.7	i	51.7	74.3	_93.2
Calcium_			i			i – i -			_
Chromium_		i	i	i		i – i ·	i	7.00	
Cobalt		i				i – i -			
Copper		i				i i i	i		-
Iron			i	i		i – i -			
Lead			i	88.9	84.4	i	72.7	105.0	94.9
Magnesium		i	i				i		
Manganese		i				i – i -			
Mercury	i		i			i		77070	
Nickel			i i			i – i -			
Potassium						i – i -		7	
Selenium_			i	1		- i -			
Silver			i	<u> </u>					***************************************
Sodium						_ i -		·	
Thallium_			i	i			i		
Vanadium_			· · · · · · · · ·	i -		- i -			
Zinc				i		_i-			
Molybdenu	i_			<u> </u>		-i-			

Serial Dilution Summary

ICP SERIAL DILUTION

		İ	826558L
Lab	Name:	STL_EDISON	

Lab Code: 12028_ Lab Job No.: _F973 ____ Batch No.: 22547_

Matrix (soil/water): SOIL_ Level (low/med): LOW__

Concentration Units: ug/L

			Serial	Ī	8		
1	Initial Sample		Dilution	İ	Differ-	İ	ĺ
Analyte	Result (I)	c	Result (S)	C	ence	ĮQ	M
Aluminum	\	 ¦	ļ	 		_	 NR
Antimony		i-i		-¦-¦	<u> </u>		NR
Arsenic	14.92	i-i	23.50	֓֞֓֞֞֞֓֞֓֞֓֞֓֞֓֡֓֡֓֞֓֡֓֡֓֡֓֡֓֡֓֡֡	100.0	-	P
Barium -		- <u> </u>	i	- "	1-100.0-	-	NR
Beryllium		i-i		-{-{		<u> </u> -	NR
Cadmium	3.58	В	3.00	ן טוי	100.0	1-	P
Calcium		- <i> </i>	!	- -		-	NR
Chromium		i-i		-{-}	i	-	NR
Cobalt -		i-;		-¦-¦		-	NR
Copper		i-i	· · · · · · · · · · · · · · · · · · ·	-	ii	i-i	NR
Iron		i-i		-i-i		-	NR
Lead	80.04	i	73.41	- i i	8.3	i-i	P
Magnesium	i —	i i		-;;		i-i	NR
Manganese		i		-i-i	¦	-	NR
Mercury		i - i		- -		i-i	NR
Nickel		i-i		-i-i	ii	-	NR
Potassium		-i		-i-i		-	NR
Selenium		-i		-i-i	i	i-i	NR
Silver		_j		-i-i		-	NR
Sodium		Ξį.		-i-i		i-i	NR
Thallium_		_i		i-i	i	! ~~!	NR
Vanadium_		Ξi		i-i		; — :	NR
Zinc		ΞÌ			i	!!	NR
		_j		i-i	ii	i-i	i

Analysis Run Log

ANALYSIS RUN LOG

Lab	Name:	$\mathtt{STL}_{_}$	EDISON	Contract:	
		_			

Lab Code: 12028_ Case No.: ____ SAS No.: ____ SDG No.:22547_

Instrument ID Number: TRACE1 TJA61_ Method: P_

Start Date: 05/09/07 End Date: 05/10/07

 Lab	****				<u> </u>									Aı	na.	ly	te	 B										
Lab Sample	D/F	 Time	 9-	R		l c	A	Ιъ	Ιъ	1.0		-	Ic	l C	1 177	l n	М	l nø	1 77	l at	1 77	La	l 70	Lat	Lm	1 * *	l 177	
No.	D/ F	1111110	ە ا ا	K	•	*	S					R	•	U	•	•	•	N	•	I	1	S	G	N	•	V	•	M
1		! İ	 		"	 	 	^	 	ינו	1	K 	ļ O	0	<u>-</u> 2-	-	G	 114	G 	1	i I	-	1	A 	L	 	I I IN	0
1CAL-BLK	1.00	2242	i		_	x	x	_ X	_ x	_ x	x	x	_ X	<u>_</u>	X	x	X	X	¦-	x	¦-	x	x	¦-	_ x	x	l	x
T1CAL1	1.00	2248	i			X	'		x	x	Х	x	x	x	Х	X	х	X	i —	X	_	x	X	i –	X	x	:	Х
T1CAL2_	1.00	2253	į		x	х	х	Х	Х	x	Х	X	х	x	x	x	x	:	i –	Х	i –	x	x	i-	x	x		x
T1CAL3	1.00	2259			X	Х	х	х	х	х	X	х	X	x	x	x	İχ	x	-	х	i –	x		i –	Х			x
ZZZZZZ	1.00	2305			İ	ĺ	İ	Ì							i	İ	i	i	i –	İ	i – i		İ	i –	İ	İ		İ
ICV/CCV	1.00	2310	i		i	i	x	i – i	i	X	_				i —	x	i –	i — i	i	i [–]	-	_	i –	i –	i-	i – i	_	i – i
ICB/CCB	1.00	2316	i		<u> </u>	-	х		i – i	Х	_	_	_	_	i –	x		_	-	- 	i –	_	i –	i –	i –	i – i	_	i – i
ICSA	1.00	2321	i		i ⁻		x		- i	Х	_	_	_	_	_	х	i —	_		i –	-	_	j — i	-	-	-	_	i – i
ICSAB	1.00	2327	ĺ		į ¯	i —	x	_ i	i i	х	_	_	_	i – i	i – i	х	i —	-	_	i – i	i – i	_	i –	i –	i –	i – i	_	i i
ZZZZZZ_	1.00	2332	i		į –	i –	İ	i-i	i-i		_	_	_	_	_			-	i –	i –	i	_	i –	i –	i –	i – i	_	i i
ZZZZZZ	1.00	2338	İ		İΞ	_	_	Ξi	Ξi	_	_	_	T	_		i –	i –	_		i –	i	_	i – i			i i		iΞi
ZZZZZZ_	1.00	2344			i_			i-i	_ 	_	_	_		_	-	_	i – i		_			_	-	-	-	-	-	i i
SS050807	1.00	2349	i		i ⁻		x		-i	\mathbf{x}	_		-i		-	x	i –	-	_	_	i-i	_	i		-	i-i	_	ΙTί
BS050807	1.00	2355					х	i i	_i	Х	-i	i	-i	_		х	i –		_	-	i-i	_	i – i	-	_	i i		i i
LCSSD055	2.00	0000			i –	_	х		-i	хİ	-i	-i	-i	-	i – i	х	i – i	_ i		_	-	_	i-i	i – i	-	-	_	i i
SSD055-D	2.00	0006			i ⁻	-	х	- j	_	X	_	_i	_	-	i i	х	i – i	i i	_	i	i	_		i i		i – i	_	ı – i
826558D_	2.00	0011			i ⁻	_	х	i	-i	x	_ i	_	_i	_	i i	Х	i i	i	_	-	-i	_	i – i	i – i	i – i	i		
CCV	1.00	0017			i ⁻	i – i	x	_i	_i	x	_	Ī	_i	-i	i – i	Х	i – i	i	_		_	_	i – i		i – i	i – i	_	ı [—] i
CCB	1.00	0023		-	i-,	_	x	-i	-i	х	i	_ i	_i	-i	-	х	i – i	-		-	-;	_	i-i	-	-	i-i	-	ıTi
826558	2.00	0028			i – i	_	i	-i		х	-i	_i	_ i	_	- 	Х	i		_	i-i	-i	-	i – i	i-i		i	_	-:
826558L_	2.00	0034			i –	_	x	_i	i	\mathbf{x}	-i	-	-i	-i	-i	х	,	_ i	_	i-i	-i	_ i	i – i		<u> </u>	i-i	-i	ıΤi
826558MS	2.00	0039			İ		\mathbf{x}	-i	Ξi	хİ	_ i	-i	-i	Ī,	i – i	Х	i – i	-i	_	i – i	-i	****	i – i	_ i	i-i	i-i	_ i	Γi
ZZZZZZ	2.00	0045			i –	i	į	-i	-i	į	-i	-i	-i	-i	_		i i	i	_	-	-i	_	i Ti	_i	- 1	-	-¦	_
826552	2.00	0050			i – i	_	_j	_i	-i	-i	i	T	_	_i	-i	x	i – i	-i	_	_	-i	-¦	i – i	-i	-i	_i	-i	
826553	2.00				i T		_;	-i	-i	-i	-i	-i	_i	-i	i	х	-	-i	-	-i	-¦	-i	i	-	-j	-i	-¦	_i
826554	2.00	0101			-	_	-i	-i	-i	-i			-	-i	-i	X	i – i	-		-	-1	٦¦	-	-i	- i	-i	-¦	
826555	4.00	0107	-		i Ti	-i	-;		-i	$\bar{\mathbf{x}}$	-i	-i	-;	-i	-i	x	i	-i	-¦	-i	-i	-i	-	i	-i	-i	-¦	-i
826556	2.00	0113			i	-i	T i	- i	-¦	x	-i	-i	-i	-i		Х	-	-;	-¦	-¦	-	 	-	-	-¦	-¦	-¦	-¦
826557	2.00	,			i – í		-i	-¦	-	X	-i	-i	-;	-	-	x	-	-¦	-i		~~- ¦	-¦	-	-	-	- 1	-	-
ccv	1.00	!			i – i	~	$\bar{\mathbf{x}}$	-i	Τi	x	-i	-	i	_	-¦	x	-¦	-¦	-¦	~~ ¦	-¦	٦¦	-;	-¦	-	-¦	٦¦	¦
ССВ	1.00	0129			i – i	-i	x	-i	-i	x	-i	-¦	¦	-¦	-¦	x	-	-	-¦		-	٦¦	-	-¦	-¦	-¦	۲¦	
826559		0135			i – i	-i	į	-j	-i	x	−¦	T'i	-¦	-	-;	x	-¦	-	-	-	-	-¦	-¦	-¦	- ¦		-¦	-
		i			i – i	-i	-;	-i	٦į	i	-i	-	-1	-¦	-¦		¦	-	-¦	-¦	-¦	-¦	-¦		-	-	-¦	-

ANALYSIS RUN LOG

Lab	Name:	STL EDISON	Contract:	

Lab Code: 12028_ Case No.: _____ SAS No.: ____ SDG No.:22547_

Instrument ID Number: TRACE1 TJA61_ Method: P_

Start Date: 05/09/07 End Date: 05/10/07

Lab	· • · · · · · · · · · · · · · · · · · ·													A	na	ly	te	s										
Sample No.	D/F	 Time 	8	R	_ A L	S B	A	B	В	C	C A	C R	C	C	F E	P B	M G	M N	H G	N I	K		A G			V		м о
 826560	2 00	0140			.	¦-	_	-	_	_ x	_	-	ļ_	-	-	x	ļ	_	ļ_	_	_		-	<u> </u> _	_	_	_	_
826561		0146			·¦-	¦-	 	¦-	¦-	^ 	<u> </u>	-	 	¦-	¦-	X	!-	ļ	<u> </u>	<u> </u>	<u> </u> _	ļ_	ļ-	-	<u> </u>	<u> </u>	-	ļ —
826562		0152			·¦−	¦-	¦-	¦-	-		-	¦-	<u> </u> –	<u> </u> –	<u> </u> -	X	¦-	¦-	<u> </u>	<u> </u> -	-	¦-	<u> </u> –	<u> </u> —	!-	<u> </u> -	-	
826563		0157			·¦-	¦-	<u> </u>		-	¦-	¦-	¦-	¦ —		¦-	X	<u> </u> –	<u> </u> _		<u> </u>	¦_	-	-		—	<u> </u>	_	-
826564		0203	-		·¦-		¦-	<u> </u> –	-	!-!	<u> </u> –		¦-	<u> </u> -	¦-	X	ļ -	<u> </u> –	!-	!-:	-	-	<u> </u> _	<u> </u>	<u> </u>	-	-	ļ —
826649		0203			·¦-	¦-	x	-	-	—	-	¦—	! —		¦-	•	<u> </u>	ļ-		<u> </u>	-	-	!-	ļ —	ļ-	-	_	-
826650	2.00	, ,	-		-1-	¦-	X	¦-	-	 	-	<u> </u>	<u> </u>	-	<u> </u> –	X	!-	-	<u> </u>	-	_	-	ļ —	<u> </u>	ļ_		_	-
826651	2.00			•	¦-	¦-	A	<u> </u>	-	-	-	ļ-,		-	!-	X	ļ	ļ	<u> </u>	!-!	-		!-	-	_	-	-	_
826652	2.00 2.00				¦-	!-	,	¦ — ¦	-	-	-	[-		<u> </u>	ļ_	X		!-	-	!-!	-		<u> </u> _	_	!-	-	_	_
CCV	1.00				¦-	ļ —	X	-		- 1	-	<u> </u> _	-		!-	X	ļ_	<u> </u> _		_	_	_	<u> </u>	_	_	_!	_	<u> </u>
CCB	1.00	. ,			<u> </u>	<u> </u> –	X	-	-!	X	_		-	!-	ļ_	X	-	<u> </u> _	<u> </u>	-		_	<u> </u> _	_	_	_!		_
826653					ļ	<u> </u>	X	-	-!	X	_	<u> </u>	-	_	_	X	!_!	!_!	_	_!	_	_		_ !	_	_[_ !	_
826654	2.00				ļ_	ļ-,	X	-	-!	-!	_		-	_	<u> </u> _	X	_	_	[_[-		_	<u> </u> _	_!	_		_	_
826495	2.00				!-	<u> </u>	X	-!	}	-!	_	-	_!		!-!	Х	<u> </u> _		_!	_ [_!	_	_	_	_	_[_	_
ICSA	5.00				<u> </u> _	ļ	<u> </u>	-	_!	_!	_	_!	_!	_	ļ	X	_	_	_	<u> _</u>	_	_		_	_	_	_	•
	1.00				!_	_	Х	_!	_!	x	[_!	_!	_		X	_	_[_	_	_		_	_	_	_	_
ICSAB	1.00				<u> </u> _	<u> </u> _	Х	_[_!	x	_	_	_1	_	_	$ \mathbf{x} $	_	_	_	_	_	_	_	_	_	_	_	_
CCV	1.00				<u> </u> _	_	Х	<u> </u>	_	х		_	_		_	X	_	_1	_	_	_1	_	_	_	_	_		
CCB	1.00	0315			<u> _</u>	_	X	_	_	x		_	_[_	_	x	_	_		_	_		}	_	_	_1		
		!			_	_	_	_	_	_	_		_	_	1_1	_	_	_1	_1	$\equiv i$	Ξĺ	_	i	Ξi	\equiv i	\equiv i	i	
					_	_		_	_	_		_	_1	_	_	_	_	_	_	_1	_	_	_1	Ξi	_i	ΞÌ	_ i	
					_	_	_	_1	_1	_1	_	_	_	_1	_	_1	_	_1	_1		Ξĺ	_	ΞÌ	Ξĺ	Ξi	Ξi	_	_
					_		_	_	_		_	_1	_	_	_	_1	_	_1	_1	_	_1	_	Ξĺ	_i	ΞÌ	Ξį	_ i	Ξį
					_	_	_	_	_	_1	_		_1	_	_	_	_	_		_	_	_ i		ΞÌ	_	Ξi	_	Ξį
					ا_ا	_	_	_	_	_	_	_	_	_	_1	_1	_1		_	\equiv i	i	ij	Ī	Ξį	Ξį	-i	٦j	-j
!-		.			_	_		_	_	_1	_	_[_1	_[_ [_	_1	Ξĺ	Ξį	Ξį	i	Ξį	Ξį	Τi	-i	−i	_ i	-i
					_	_	_	_1	_1	_1	_	_1	_1	_	_1	Ξi	_ i	-i	Ξį	Ξi	Τį	Ī	Ξį	-i	-i	~	-i	-i
				-	1_1	_1	_1	_	_		_	_1	_1	Ξi		_ i		-i	Ξį	Ξį	Ξį	_ i	_i	~~ i	-i	−j	-i	i
<u> </u> _		1.			_	_	_	_	_ [_ [_i	Ξİ	_i	<u> [</u> i	_j	_j	_i	-i	-i	-j	_ i	-i	-¦	-i	_i	-i	-i
					_	_	_	_[_	_	_i	_j	_	Ξİ		_i	_i		Ξi	_ i	<u> </u>	- i	-i	-i	-	-i	-¦	-¦
					$ _ $	_	_	_ [_[_ [Ξİ	<u> </u>	_j	_i	_i	_i	_i	-i	-j	-j	-i	-i	-i	-j	i		-i	-¦
					_	_		_	_ [_	Ī	_i	_i	_i	_i	<u>_</u> i	_i	_i	-i	_;		-i	-i	-i	-	-¦	-i	-í
					<u> </u>	_1	_		_	_ .	Ξİ	_ i	_j	_i	<u> </u>	<u> </u>	<u>_</u> i	_	_ i	- i	-i	- j	-i	-;	-j	-¦	-	-¦
					_	_[_	_	_ [_	_ į	_	_i	_i	Ξi		-i	_ i	_ i	_ i	-i	-i	_	-j	-i	-¦	~ 	-¦

ANALYSIS RUN LOG

Lab	Name:	$\mathtt{STL}_{_}$	_EDISON	Contract:	

Lab Code: 12028_ Case No.: _____ SAS No.: ____ SDG No.:22547_

Instrument ID Number: TRACE1 TJA61_ Method: P_

Start Date: 05/10/07 End Date: 05/10/07

Lab			<u> </u>											Aı	na.	ly	te	s										
Sample	D/F	 Time	 %-	R	<u>_</u>	Ιs	ΙΔ	lв	l B	l C	Ic	lc	lc	10	le	Ιъ	lм	l M	l tr	l nt	l w	Ιc	A	LINT	l m	1 37	17	l nu
No.	-/-			10						D													G				N	•
1CAL-BLK	1.00	1009	 		. <u>_</u>	_ x	_ x	_ v	_ 	_ x	_ v	_ v	_ _	_ _	_ x	_	_ x	 	_	_ x	<u> </u> _	-	_ x	 	_	_ x	_ x	_ x
TlCAL1		1015			- '	X				<u>^</u>	X X		!	X		!	•	•	¦-	X		•	X	<u> </u>	X		!	1
T1CAL2		1020	· —		- '	X				•	•	•	X X	,	•				—	X	[-		X	ļ		<u>^</u> X	X X	
T1CAL3		1026			• •	X	•		•		X				X	•	:	:	¦—	X	 	X	•	<u> </u> –	:	X	: :	:
zzzzzz	1.00	1	¦		. ¦		**	**	21	2		<u>^</u> .	<u>^`</u>	<u>21</u> 	1	A	<u>^</u> 	<u>^</u>	-	1	<u> </u>	<u>^</u>	A	 	1	^	Λ.	10
ICV/CCV	1.00	•			·¦-	¦-	X	¦-	¦-	-	-	-	-	-	-	-	¦-¦	-		 	-	¦-	¦-	-	¦-	-		¦-
ICB/CCB	1.00		¦ ——		-	-	Х	-	¦ —	-	-	***	-	-	-	-	-	-	-	¦-	-	¦ —	¦-	 	¦-,	-	-	l-
ICSA -	1.00	,	' 		'i-	i-	x	¦ —	¦-	-	-	-	-		-	-		-		-	-	—	-	—	-		-	¦-
ICSAB	1.00				'i-	i-	x	<u> </u>	-	-	-	-	-	-	-	_	¦ — ¦	-		¦-	-	-	¦-	-	 	-	-	¦-
	1.00				'i-	i-	i	-	-	-	-	-	-	-	-	-	-	-		-	-	-	¦-	-			-!	_
ZZZZZZ	1.00	,		-	·¦-	i-	-		-	-	-	'-¦	-¦	-	-	-	-	-	-		-	-	¦-,	-	-	 	-!	<u>-</u>
zzzzzz	1.00				i-	i-	-	_	-	-		¦	-¦	-	-	-	¦¦	-	-	-	-	-	-	-	-	-	-¦	-
826558	2.00				¦-	i –	i – i		 -	-	-	-¦	-		-¦	-	-	-		-	-¦	-	!-	-		-	-	¦ -
ZZZZZZ	10.00		-			i – i	i – i	-	-	-	-¦	-	-	-	-;		- i	-¦	-	-	-¦	-	-	-	-	-¦	-	_
ZZZZZZ	4.00				i-	- 	-	-	-	-¦	-¦	-	٦¦	-	-¦	-	-	٦¦	-¦	-	-¦	-	!	-	-	-¦	-1	í –
ZZZZZZ	1.00	1145			<u> </u>	-	-	_	i-i	-i	-¦	-¦	-¦	-¦	-¦	-	-	-¦	-¦	-		-	-	-	-	-¦		i-
ZZZZZZ	1.00	1151			i-		i i	_	-	-i	-i	-i	-		-i	-¦	-i	-i		-:	-¦	-	-		-1	-:	-¦	i –
ccv	1.00	1156			į –	-	x	-	_i	~~¦	-	-¦	-¦	-¦	-¦	-	-¦	-¦	-	~	-	-¦	-	-		-	-¦	i –
CCB i	1.00	1202			i-	_	х	-	-i	-;	-	-	-¦	-¦	-;		-¦	-	-¦	-	-1	-¦	-	-	- ¦	-	-¦	i-
ZZZZZZ	2.00	1208			i_	i i		-	-i	-i	-;	-	-	-1	-¦	-¦	~¦	-¦	-¦	-i	-¦		-	-¦	-¦	-¦	-[-
ZZZZZZ	2.00	1214				-	-i	-i	-i	-i	-i	-¦	-	-¦	-	-i	-i	-;	-¦	-	-¦		l-¦	-¦	-¦	-	-¦	-
ZZZZZZ	1.00				i –	i-i	-i	-	-i	-i	-;	-	-	-i	-i	-¦		¦	-¦	-¦	-¦	;	-	-¦	-¦	-¦	-¦	-
ZZZZZZ	1.00	1225			i	-	_i	-i	-i	Ξį	-i	-i	-i	-i	-i	- í	-i	-;	-;	-i	-¦	-¦	i-i	-;	-	-	-¦	-
ZZZZZZ	1.00	1230			i –	-i	-i	_i	-i	-i	-i	-i	_	-i	-i	-i	-i	- i	-¦	-i	-i	- 1	'-¦	-¦	-¦	-¦	~¦	_
ZZZZZZ	1.00	1236				_i	-i	-i	-i		-i	-i	-i	-i	ī	-	-;	-;	-;	-i	-i	-¦	-i	-	-	-;	-¦	_
ZZZZZZ	1.00	1241			i_i	i	-i	-	_i	-i	-i	-j	_	-i	-i	-¦	~	-i	-i	-i	-¦	-	-¦	-¦	-¦	-¦		_
CSA	1.00	1247			İΠ	j	$\overline{\mathbf{x}}$	-i	-i	-i	Ţ,	-i	-i	-i	-i		-;	-;	-i	-¦	-	-	-i	-i	٦¦	- ¦	-¦	_
CSAB	1.00	1252			i i	-i	хİ	-;		-i	-i	-i	-i	_	−i	-i	-i	-i	-i	-i	-i	-¦		-¦	-¦	-i	-i	-
CCA	1.00	1258					Хİ	Ti	_i	Ξį	-i	-i	-i	-i	-i	-i	-i	_	-i	-i	-i	7	-i	-;	-;	-i	-¦	_
CCB	1.00	1304			i_i	_i	x	_i	_i	_i	_i	<u> </u>	-i	-¦	-i	-i	٦¦	-i	-i	-i	_	-i	-	-¦	-¦	-	-	_
					i_i	_	_İ	_i	Ξİ	_i	_		Ξį	_i	_i	_ i	-	-i	-;	7	_	-i	-¦	-¦	-¦	-	-	_
_					i_i	<u> </u>	_i	_i	_i	_i		_	_i	_i	-i	~ j	-i	-i	-i	~¦	- j	-i	-;	Ξį	-¦	-¦	-i	_
	1	i		-	ıŤi	_i	-i	-i	-i	-	-i	-i	٦į:	-i	- i	−i	-i	-i	-¦	-;	-i		-i	-i	-¦	-		_

This is the Last Page of the Document